詳細介紹
RL-AO江西地埋式一體化屠宰污水處理設備
RL-AO江西地埋式一體化屠宰污水處理設備
為了有效地浮選出有價礦物,鉛鋅硫化礦選礦廠在各個浮選階段均加入了一定量的有機巰基類捕收劑,這些有機巰基類捕收劑致使選礦作業(yè)廢水的成分復雜、有毒有害成分增多,若將這些大水量的選礦作業(yè)廢水直接排放,勢必對周邊環(huán)境造成嚴重危害.因此,選礦作業(yè)廢水一般先排入尾礦庫中,在尾礦庫通過自然降解后再外排至周邊水體.盡管尾礦庫外排水的硫化物指標達到了《鉛、鋅工業(yè)污染物排放標準》(GB25466—2010)的排放要求,但該標準并沒有提出關于尾礦庫外排水的揮發(fā)性有機硫化物(VOSCs)排放種類的要求,而揮發(fā)性有機硫化物會對水體周邊環(huán)境造成嚴重影響.VOSCs進入大氣對流層后被氧化生成SO2,形成鹽,對區(qū)域酸沉降有較大影響,另外,多數(shù)含硫的有機物毒性很強,會危害人體健康.常見的VOSCs物質如二硫化碳(CS2)、二甲基二硫醚(C2H6S2)和3,6-二甲基-1,2,4,5-四硫環(huán)己烷(C2H4S4)等因具有刺激性的惡臭氣味和極低的嗅閾值而受到人們的廣泛關注.但目前還未見到有關鉛鋅硫化礦礦山廢水中VOSCs組成特征及來源的研究.
人類活動所產生的人類排放,如化石燃料的燃燒、石化煉油行業(yè)的生產排放、城市污水處理廠、禽畜養(yǎng)殖場、垃圾填埋場和礦山行業(yè)等是VOSCs的重要來源.一部分VOSCs是生產過程中“跑冒滴漏”的排放,一部分是廢水中大量繁殖的厭氧微生物在進行新陳代謝過程中產生的.國內外對礦山行業(yè)中浮選廢水的VOSCs組成及來源的相關很少,Simpson等(2010)發(fā)現(xiàn)油砂在露天開采的過程中會有VOSCs排放.但這些研究僅對礦石開采過程中的VOSCs進行分析,沒有摸清VOSCs在廢水中的組成特征,也沒有對選礦廢水和尾礦庫外排水中VOSCs進行探討.因此,本研究以國內某鉛鋅硫化礦作為研究對象,對其浮選過程及尾礦庫外排水中VOSCs的組成進行系統(tǒng)研究,在獲得VOSCs組成特征的基礎上,分析各單元作業(yè)廢水及尾礦庫外排水中VOSCs的來源,以期為鉛鋅硫化礦浮選工藝改進和尾礦庫外排水安全排放提供參考.
2 材料與方法(Materials and methods) 2.1 采樣點的布設
以國內某鉛鋅硫化礦各選礦作業(yè)廢水及尾礦庫外排水作為研究對象,采樣點分布如圖 1所示.洗礦廢水為破碎洗礦作業(yè)出水;φ45 m濃密機溢流水為浮選作業(yè)混合水;φ 53 m濃密機溢流水為鋅尾濃縮作業(yè)出水;φ 30m濃密機溢流水為選硫作業(yè)后硫尾產品濃縮出水,是尾礦庫進水水源.對上述4種作業(yè)廢水及尾礦庫外排水進行采集,用采水器采集采樣點水樣,裝于25 L聚乙烯水桶并帶回實驗室.同時,收集選礦作業(yè)過程中投加的工業(yè)用浮選藥劑,真空密封帶回實驗室用于研究自然降解特性.
圖 1 鉛鋅硫化礦選礦作業(yè)流程及作業(yè)廢水示意圖(圖中為采集水樣點)
2.2 樣品處理與分析
采用QJ-8001Y臭氧發(fā)生器(5 g · h-1)對尾礦庫外排水與各單元作業(yè)廢水進行臭氧氧化處理,臭氧濃度為40 mg · L-1,水樣放置在自制玻璃圓柱反應器中(總體積3.5 L,有效液體體積3 L),臭氧從反應器底部曝氣盤以鼓泡方式通入水樣中進行反應,反應過程維持在25 ℃左右,總取樣體積保持在水樣體積10%以下.當水樣總有機碳(TOC)、pH和根離子(SO2-4)濃度趨向穩(wěn)定時停止反應,并對水樣臭氧氧化處理前后TOC、pH和SO2-4濃度進行觀察.根據臭氧處理前后SO2-4濃度增量,通過摩爾質量公式推算水中低價態(tài)硫(價態(tài)小于+6)濃度,同時與無機硫化物的濃度測定值進行對比.
取尾礦庫外排水原水與各單元作業(yè)廢水原水使用Stratum PTC 吹掃-捕集樣品濃縮器(美國特利丹公司)進行樣品濃縮,然后注入GC7890A/5975CMSD氣相色譜質譜聯(lián)用儀(美國安捷倫公司)進行分析,觀察尾礦庫進水與外排水中揮發(fā)性有機硫化物變化情況.
以純凈水為溶劑,分別配制藥劑質量濃度為100 mg · L-1的丁基二硫代碳酸鈉(n-BX)、二乙基二硫代氨基甲酸鈉(DDTC)、腐殖酸鈉(SH)和*油溶液,藥劑溶液置于相對濕度75%、周邊平均溫度28 ℃、敞開明亮光照環(huán)境下進行自然降解試驗.當4種浮選藥劑水溶液自然降解率達到*時,取水樣使用Stratum PTC 吹掃-捕集樣品濃縮器(美國特利丹公司)進行樣品濃縮,然后注入GC7890A/5975CMSD氣相色譜質譜聯(lián)用儀(美國安捷倫公司)進行分析.
表 1 各單元作業(yè)廢水臭氧氧化處理前后pH、TOC、SO2-4濃度變化
各單元作業(yè)廢水經臭氧氧化處理后SO2-4濃度顯著增加.通過摩爾質量濃度公式折算出各作業(yè)廢水中低價態(tài)硫(價態(tài)小于+6)濃度分別是:洗礦廢水 5 mg · L-1,φ45 m濃密機溢流水 107 mg · L-1,φ53 m濃密機溢流水149 mg · L-1,φ30 m濃密機溢流水 112 mg · L-1.各單元作業(yè)廢水中無機硫化物的濃度范圍是0.60~1.59 mg · L-1,經臭氧氧化處理后無機硫化物濃度均未檢測出,因此,無機硫化物中S2-經臭氧氧化后產生的SO2-4對各單元作業(yè)廢水SO2-4濃度增量的貢獻很低,可以排除無機硫化物對水體中含硫化合物的貢獻.
破碎、沖洗作業(yè)工段產生的洗礦廢水含有大量的泥沙和泥漿,這類作業(yè)廢水的主要污染物是含硫量低的有機化合物,臭氧氧化處理后生成大量的有機酸導致其pH下降.磨礦作業(yè)工段和鉛鋅浮選作業(yè)工段在作業(yè)過程中加入大量的有機巰基類捕收劑,礦漿和廢水經過鉛鋅浮選后進入鋅尾濃縮作業(yè)工段,鋅尾濃縮作業(yè)工段產生的作業(yè)廢水(φ53 m濃密機溢流水)低價態(tài)元素硫含量.鋅尾濃縮作業(yè)后的礦漿和部分廢水會進入硫浮選作業(yè)工段,通過自動化調控添加調節(jié)礦漿和廢水pH,導致隨后的φ30 m濃密機溢流水呈中性.作為進入尾礦庫的主要水源的φ30 m濃密機溢流水是選硫作業(yè)工段產生的廢水,這類作業(yè)廢水進入尾礦庫時無機硫化物濃度很低,然而φ30 m濃密機溢流水經過臭氧氧化處理后SO2-4濃度增量是335 mg · L-1,說明這類廢水還存在濃度較大的低價態(tài)硫化物,因此,推測進入尾礦庫的廢水中低價態(tài)硫的存在形式可能為有機硫化物,
3.1.2 各單元作業(yè)廢水中VOSCs的分析結果
各單元作業(yè)廢水中主要PTC-GC/MS監(jiān)測結果見表 2.各單元作業(yè)廢水中φ45 m濃密機溢流水、φ53 m濃密機溢流水、φ30 m濃密機溢流水均檢測出CS2.CS2在水中的溶解度為0.201%(20 ℃),易溶于醇類,若水體中存在醇類等有機物,根據相似相溶原理,將增大水體中CS2的含量.
表 2 各單元作業(yè)廢水主要PTC-GC/MS監(jiān)測結果
結合圖 1和表 2可以看出,金屬硫化礦在破碎、沖洗作業(yè)產生的洗礦廢水中未檢測出VOSCs相關物質,因此,礦渣不是各單元作業(yè)廢水VOSCs主要來源.磨礦作業(yè)和鉛鋅浮選作業(yè)加入大量有機巰基類捕收劑,隨后在鋅尾濃縮作業(yè)產生的φ53 m濃密機溢流水中檢測出相對比例較高的CS2.作為混合作業(yè)廢水的φ45 m濃密機溢流水,當含有CS2的φ53 m濃密機溢流水與不含CS2的洗礦廢水混合稀釋后,檢測出的CS2相對比例有所下降.硫浮選作業(yè)工段再次加入大量的有機巰基類捕收劑進行硫浮選,隨后經過φ30 m濃密機沉降后的溢流水中檢測出的主要VOSCs物質是 CS2、C4H7NS,其中,CS2在各種成分中所占的相對比例(35.60%);同時,φ30 m濃密機溢流水是進入尾礦庫的主要水源,為尾礦庫水體帶入大量的CS2.φ53 m濃密機溢流水、φ45 m濃密機溢流水和φ30 m濃密機溢流水均屬于浮選作業(yè)工段產生的作業(yè)廢水,選礦作業(yè)過程產生的VOSCs主要來源于浮選作業(yè)工段,其中,主要VOSCs物質是CS2.因此,浮選作業(yè)廢水VOSCs排放情況與浮選作業(yè)工段投加的大量有機巰基類捕收劑有關.
3.2 各單元作業(yè)廢水中VOSCs藥劑來源分析
經過12 d自然降解后,100 mg · L-1 4種浮選藥劑水溶液自然降解率達到*,PTC-GC/MS檢測結果如表 3所示.除*油(C10H18O)自然降解的產物中未檢測出CS2外,3種浮選藥劑水溶液自然降解產物中均檢測出CS2.n-BX(C5H9NaOS2)藥劑水溶液自然降解后產生的CS2含量,相對比例是80.33%.其次DDTC(C5H10NNaS2)藥劑水溶液自然降解后產生的CS2相對比例是58.35%,同時還產生C4H7NS為φ30 m濃密機溢流水貢獻VOSCs,與表 2的測定結果相符.SH(C9H8Na2O4)藥劑水溶液自然降解產物中仍檢測出相對比例較高的CS2、丁醇(C4H9OH)、苯(C6H6)和氨基甲酸乙酯(C3H7NO2),推斷SH除腐殖酸鹽外,還混合了部分含硫和含氮的有機化合物.
表 3 四種浮選藥劑水溶液自然降解后主要PTC-GC/MS監(jiān)測結果
磨礦和浮選作業(yè)中加入大量有機巰基類浮選藥劑(如n-BX、DDTC和SH),除65%~80%被鉛鋅精礦帶到冶煉廠精煉外,其他部分殘留在細小的尾礦和選礦廢水中,在濃密機中經過長時間的自然降解后產生CS2,導致浮選作業(yè)廢水中含有相對比例較高的CS2.其中,n-BX在浮選過程中的藥劑用量是其他3種藥劑用量總和的2.80倍,其自然降解過程中產生了大量的CS2,因此,n-BX是φ53 m濃密機溢流水、φ45 m濃密機溢流水和φ30 m濃密機溢流水中VOSCs的主要藥劑來源.
3.3 尾礦庫外排水中的VOSCs組成和來源分析 3.3.1 尾礦庫外排水中低價態(tài)硫的存在形式
尾礦庫外排水經臭氧氧化處理15 min后,pH、TOC、無機硫化物和SO2-4濃度的變化情況見表 4.尾礦庫外排水經過臭氧持續(xù)處理后,尾礦庫外排水pH降至3.16,TOC減少3.21 mg · L-1,TOC去除率是45.5%.尾礦庫外排水經臭氧氧化處理后SO2-4濃度顯著增加,當臭氧氧化達到平衡時SO2-4濃度增量是66 mg · L-1,通過摩爾質量濃度公式折算出尾礦庫外排水中低價態(tài)硫(價態(tài)小于+6)濃度是22 mg · L-1.在臭氧氧化過程中生成的SO2-4屬于強酸根,在水體中沒有足夠的強堿金屬離子存在的情況下,大量的強酸根致使水體呈酸性.
表 4 尾礦庫外排水臭氧氧化處理前后pH、TOC、SO2-4濃度變化
鉛、鋅、銅等金屬離子與S2-結合形成溶度積<10-9的沉淀物,同時單質硫(S)不溶于水中,當尾礦庫水體經過長時間的沉降處理后,金屬硫化物與單質硫(S)不易存在于尾礦庫外排水中.尾礦庫外排水中無機硫化物的監(jiān)測濃度是0.48 mg · L-1,無機硫化物中S2-經臭氧氧化后產生的SO2-4對尾礦庫外排水SO2-4濃度增量的貢獻很低,可以排除單質硫(S)、無機硫化物對水體中含硫化合物的貢獻.因此,推測尾礦庫外排水中低價態(tài)元素硫的存在形式可能為有機硫化物.
3.3.2 尾礦庫外排水中VOSCs種類的監(jiān)測結果
尾礦庫外排水PTC-GC/MS監(jiān)測結果見表 5.尾礦庫外排水檢測出揮發(fā)性有機物(VOCs)的種類有783種,然而諸如C7H10O2(0.18%)、C15H24(0.25%)、C13H22O(0.15%)、C15H28(0.29%)等大部分檢測物質的相對比例<1%.尾礦庫外排水VOSCs中未檢測出CS2,主要檢測出的VOSCs物質是3,6-二甲基-1,2,4,5-四硫環(huán)己烷(C2H4S4)、N-巰基-甲酰胺(CH2SNO)和2-甲基-3-噻唑啉(C4H7NS),其中,C2H4S4在各種成分中所占的相對比例(22.59%).因此,在臭氧氧化處理尾礦庫外排水的過程中,C2H4S4的硫元素被氧化生成SO2-4,貢獻了處理后水樣的一部分SO2-4濃度.CH2SNO和C4H7NS中的硫元素同樣能被氧化生成SO2-4,但CH2SNO和C4H7NS在各種成分中所占的相對比例不高,對臭氧處理后尾礦庫外排水SO2-4濃度貢獻很低.因此,尾礦庫外排水中VOSCs的主要物質是C2H4S4.
φ30 m濃密機溢流水在尾礦庫中經過沉降、揮發(fā)、光降解和生物作用等多種方式去除了大部分TOC.尾礦庫進水TOC的測定值是41.21 mg · L-1,尾礦庫外排水TOC的測定值是7.06 mg · L-1,去除率達到82.9%.因此,尾礦庫能夠去除選礦廢水中大部分有機污染物.尾礦庫水體污染物降解過程和方式如圖 2所示.
圖 2 尾礦庫水體污染物降低過程和方式示意圖
表 5 尾礦庫外排水PTC-GC/MS監(jiān)測結果
φ30 m濃密機溢流水進入尾礦庫后,*階段以沉降和揮發(fā)為主,此時有機物濃度相對較高、水層淺、揮發(fā)作用明顯、水體較渾、透光率低,因此,光降解作用受到限制.隨著水流的推進,大量的含硫礦泥沉積在尾礦庫底部.
第二階段兼性異養(yǎng)微生物消耗水體中易降解的含碳有機物,同時兼性自養(yǎng)微生物消耗含硫化合物.Jordan等(1997)研究表明,部分兼性自養(yǎng)微生物在好氧環(huán)境下能夠代謝CS2生成H2S,這個階段中兼性異養(yǎng)微生物和兼性自養(yǎng)微生物在進行代謝活動時消耗有限的溶解氧.由于尾礦庫水體大,注入水量相對于庫容很小而導致水流流速低,水體相對靜止,阻礙了水體與空氣的混合,限制了空氣中的氧擴散溶解入水體中.
第三階段水層加深,水體中溶解氧嚴重不足,為水體中厭氧微生物的活動提供了有利的環(huán)境條件.此時能被利用的有機碳大部分已經被消耗,異養(yǎng)微生物活動不活躍,厭氧自養(yǎng)微生物的活動能力得到表現(xiàn).Cox等(2013)研究表明,在厭氧條件下自養(yǎng)微生物降解CS2所產生的中間產物之一是H2S,Witter和Jones(1999)研究表明,C2H4S4的前體為H2S,自養(yǎng)微生物在厭氧情況下通過還原H2S中元素硫產生C2H4S4等一系列聚硫雜環(huán)化合物,形成更為復雜的含硫有機化合物.
4 結論(Conclusions)
1)硫化鉛鋅礦浮選過程中產生VOSCs的環(huán)節(jié)主要集中在浮選作業(yè)工段,該作業(yè)工段殘留的有機巰基類浮選藥劑(丁基二硫代碳酸鈉(n-BX)、二乙基二硫代氨基甲酸鈉(DDTC)和腐殖酸鈉(SH))在濃密機中經過長時間的自然降解產生CS2,同時CS2也是浮選作業(yè)工段主要的VOSCs物質.
2)相對于另外3種常用浮選藥劑,丁基二硫代碳酸鈉(n-BX)在浮選作業(yè)工段中的用藥量大,同時n-BX的自然降解產生的CS2多.因此,n-BX是浮選作業(yè)廢水主要藥劑來源,同時n-BX自然降解產物也為尾礦庫微生物新陳代謝提供了豐富的CS2.
3)尾礦庫外排水中VOSCs不含CS2,其主要VOSCs物質是C2H4S4.尾礦庫的構筑特點及進水中豐富的CS2為水體中微生物提供了有利環(huán)境,通過兼性異養(yǎng)微生物、厭氧自養(yǎng)微生物等微生物的生物代謝消耗CS2生成C2H4S4.
5 展望(Prospects)
本研究中尾礦庫水體中的兼性異養(yǎng)微生物、厭氧自養(yǎng)型微生物在自身新陳代謝的過程中消耗CS2生成C2H4S4,其代謝機理及菌種鑒定和篩選仍然需要進一步探討.同時,根據鉛鋅硫化礦浮選廢水及尾礦庫外排水中VOSCs的組成特征和來源解析,針對鉛鋅硫化礦浮選工藝改進提出以下幾點建議:
1)根據實際情況減少并控制丁基二硫代碳酸鈉(n-BX)、二乙基二硫代氨基甲酸鈉(DDTC)、腐殖酸鈉(SH)的藥劑用量,或選用新型浮選藥劑和新型浮選工藝,以期減少浮選藥劑自然降解產物對浮選廢水VOSCs的貢獻.
2)建議采用曝氣吹脫的方式處理浮選工藝中的回用水,利用CS2易揮發(fā)性進行強制吹脫收集并進行處理,減少VOSCs對浮選廢水回用系統(tǒng)的負荷.
3)浮選廢水在進入尾礦庫前進行曝氣吹脫,減少進入尾礦庫廢水中CS2濃度和總量,同時提高尾礦庫水體的溶解氧含量,提高尾礦庫水體中微生物對有機污染物的礦化效率.
“生態(tài)透析技術”是根據生態(tài)學的原理和系統(tǒng)科學的原則,通過模擬自然界河流的彎曲和生物多樣性,利用比表面積大的改性高分子材料作為基質,將河流大彎曲微型化,構成無數(shù)彎彎曲曲的小河流,從而創(chuàng)立了一個有利于“微生物→微型小動物(浮游生物)→小動物”各個生物群落生態(tài)位協(xié)同匹配的生態(tài)鏈及生態(tài)系統(tǒng),在人工強化控制各個生態(tài)因子條件下,使流經本系統(tǒng)的污水臭氣中的有機污染物快速降解去污,轉化為氮氣、二氧化碳、氧氣、水,實現(xiàn)污水無化學添加、無臭氣排放、無有機污泥的“三無處理”。
10多年來,“生態(tài)透析技術”中的“污水臭氣的去污除臭系統(tǒng)及其使用方法”、“一種污染水體的生態(tài)透析裝置及處理”、“水體微藻類生態(tài)透析系統(tǒng)裝置及應用方法”、“水體生態(tài)凈化系統(tǒng)及其凈化方法”等獲得了國家,以上均已開始申請權,目前已經進入PCT申請階段。
1.農村生活污水處理——“美麗鄉(xiāng)村”的應用
“美麗鄉(xiāng)村”的目標是實現(xiàn)農村環(huán)境的整體整治,實現(xiàn)生活污水和廁所污水治理,實現(xiàn)農村水、氣、固體垃圾的處理及循環(huán)再生利用,通過美麗鄉(xiāng)村的“點”治理,逐步成片,實現(xiàn)連片環(huán)境整治,終實現(xiàn)大環(huán)保戰(zhàn)略。農村環(huán)境治理的總要求是“不要污水橫流、不要河湖發(fā)臭、不要垃圾遍地、不要花太多錢”,因此,農村污水治理技術除了技術過硬,可實現(xiàn)無污泥、無臭氣、無二次污染外,還必須要求低成本運營,必須實現(xiàn)農村干凈、整潔、衛(wèi)生,以及使用簡單、操作方便。