詳細介紹
西門子6ES7288-1SR40-0AA0*商 西門子6ES7288-1SR40-0AA0*商
:李 工()竭誠為您服務
花30秒詢價,你會知道什么叫優(yōu)勢;花60秒咨詢,你會知道什么叫服務;合作一次,你會知道什么叫質(zhì)量!我將提供的質(zhì)量,服務作為自已zui重要的責任。期待你的詢價!!
西門子PLC模塊,西門子觸摸屏,西門子變頻器 ,西門子軟啟動器 ,西門子直流調(diào)速器
西門子數(shù)控系統(tǒng) ,西門子電源模塊 ,西門子電纜 ,西門子接頭<連接器》, 西門子網(wǎng)卡
西門子編程軟件 ,西門子工控機
八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓撲結(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領(lǐng)域不斷擴大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅(qū)動電源等領(lǐng)域也有廣闊的應用前景。
設計方法編輯電源的電磁干擾水平是設計中難的部分,設計人員能做的多就是在設計中進行充分考慮,尤其在布局時。由于直流到直流的轉(zhuǎn)換器很常用,所以硬件工程師或多或少都會接觸到相關(guān)的工作,本文中我們將考慮與低電磁干擾設計相關(guān)的兩種常見的折中方案[1]。
電源設計中即使是普通的直流到直流開關(guān)轉(zhuǎn)換器的設計都會出現(xiàn)一系列問題,尤其在高功率電源設計中更是如此。除功能性考慮以外,工程師必須保證設計的魯棒性,以符合成本目標要求以及熱性能和空間限制,當然同時還要保證設計的進度。
另外,出于產(chǎn)品規(guī)范和系統(tǒng)性能的考慮,電源產(chǎn)生的電磁干擾(EMI)必須足夠低。不過,電源的電磁干擾水平卻是設計中難精確預計的項目。有些人甚至認為這簡直是不可能的,設計人員能做的多就是在設計中進行充分考慮,尤其在布局時。
盡管本文所討論的原理適用于廣泛的電源設計,但我們在此只關(guān)注直流到直流的轉(zhuǎn)換器,因為它的應用相當廣泛,幾乎每一位硬件工程師都會接觸到與它相關(guān)的工作,說不定什么時候就必須設計一個電源轉(zhuǎn)換器。本文中我們將考慮與低電磁干擾設計相關(guān)的兩種常見的折中方案;熱性能、電磁干擾以及與PCB布局和電磁干擾相關(guān)的方案尺寸等。
文中我們將使用一個簡單的降壓轉(zhuǎn)換器做例子,如圖1所示。普通的降壓轉(zhuǎn)換器普通的降壓轉(zhuǎn)換器圖1.普通的降壓轉(zhuǎn)換器在頻域內(nèi)測量輻射和傳導電磁干擾,這就是對已知波形做傅里葉級數(shù)展開,本文中我們著重考慮輻射電磁干擾性能。
在同步降壓轉(zhuǎn)換器中,引起電磁干擾的主要開關(guān)波形是由Q1和Q2產(chǎn)生的,也就是每個場效應管在其各自導通周期內(nèi)從漏極到源極的電流di/dt。圖2所示的電流波形(Q和Q2on)不是很規(guī)則的梯形,但是我們的操作自由度也就更大,因為導體電流的過渡相對較慢,所以可以應用HenryOtt經(jīng)典著作《電子系統(tǒng)中的噪聲降低技術(shù)》中的公式1。
Q1和Q2的波形Q1和Q2的波形圖2.Q1和Q2的波形In=2IdSin(nπd)/nπd×Sin(nπtr/T)/nπtr/T(1)其中,n是諧波級次,T是周期,I是波形的峰值電流強度,d是占空比,而tr是tr或tf的小值。
我們發(fā)現(xiàn),對于一個類似的波形,其上升和下降時間會直接影響諧波振幅或傅里葉系數(shù)(In)。在實際應用中,極有可能會同時遇到奇次和偶次諧波發(fā)射。如果只產(chǎn)生奇次諧波,那么波形的占空比必須精確為50%。而實際情況中極少有這樣的占空比精度。
諧波系列的電磁干擾幅度受Q1和Q2的通斷影響。在測量漏源電壓VDS的上升時間tr和下降時間tf,或流經(jīng)Q1和Q2的電流上升率di/dt時,可以很明顯看到這一點。這也表示,我們可以很簡單地通過減緩Q1或Q2的通斷速度來降低電磁干擾水平。
事實正是如此,延長開關(guān)時間的確對頻率高于f=1/πtr的諧波有很大影響。不過,此時必須在增加散熱和降低損耗間進行折中。盡管如此,對這些參數(shù)加以控制仍是一個好方法,它有助于在電磁干擾和熱性能間取得平衡。具體可以通過增加一個小阻值電阻(通常小于5Ω)實現(xiàn),該電阻與Q1和Q2的柵極串聯(lián)即可控制tr和tf,你也可以給柵極電阻串聯(lián)一個“關(guān)斷二極管”來控制過渡時間tr或tf(見圖3)。
這其實是一個迭代過程,甚至連經(jīng)驗豐富的電源設計人員都使用這種方法。我們的終目標是通過放慢晶體管的通斷速度,使電磁干擾降低至可接受的水平,同時保證其溫度足夠低以確保穩(wěn)定性。用關(guān)聯(lián)二極管來控制過渡時間用關(guān)聯(lián)二極管來控制過渡時間圖3.用關(guān)聯(lián)二極管來控制過渡時間開關(guān)節(jié)點的物理回路面積對于控制電磁干擾也非常重要。
通常,出于PCB面積的考慮,設計者都希望結(jié)構(gòu)越緊湊越好,但是許多設計人員并不知道哪部分布局對電磁干擾的影響大。回到之前的降壓穩(wěn)壓器例子上,該例中有兩個回路節(jié)點(如圖4和圖5所示),它們的尺寸會直接影響到電磁干擾水平。
降壓穩(wěn)壓器模型1降壓穩(wěn)壓器模型1圖4.降壓穩(wěn)壓器模型1降壓穩(wěn)壓器模型2降壓穩(wěn)壓器模型2圖5.降壓穩(wěn)壓器模型2Ott關(guān)于不同模式電磁干擾水平的公式(2)示意了回路面積對電路電磁干擾水平產(chǎn)生的直接線性影響。
E=263×10-16(f2AI)(1/r)(2)輻射場正比于下列參數(shù):涉及的諧波頻率(f,單位Hz)、回路面積(A,單位m2)、電流(I)和測量距離(r,單位m)。此概念可以推廣到所有利用梯形波形進行電路設計的場合,不過本文僅討論電源設計。
參考圖4中的交流模型,研究其回路電流流動情況:起點為輸入電容器,然后在Q1導通期間流向Q1,再通過L1進入輸出電容器,后返回輸入電容器中。當Q1關(guān)斷、Q2導通時,就形成了第二個回路。之后存儲在L1內(nèi)的能量流經(jīng)輸出電容器和Q2,如圖5所示。