RLB宜昌地埋式一體化屠宰污水處理設(shè)備
RLB宜昌地埋式一體化屠宰污水處理設(shè)備
養(yǎng)殖污水處理工藝
利用微藻進行污水處理的歷史追溯已久. 早在20世紀(jì)50年代,Oswald等就提出利用微藻處理污水的設(shè)想. 此后,以藻-菌共生體系和高效藻類塘為代表的懸浮生長藻類塘系統(tǒng)在分散式污水處理中得到了廣泛的工程應(yīng)用. 但這類系統(tǒng)因占地面積大、處理效果不穩(wěn)定等局限性,一直未能成為污水處理的主流工藝. 近年來,在市政污水處理廠深度凈化需要以及渴望從污水中獲得生物柴油的驅(qū)動下,微藻污水處理在世界范圍內(nèi)重獲新生.
微藻生長過程需要大量吸收氮(N)、磷(P)等營養(yǎng)元素,可直接降低二/三級出水中N、P等污染物的含量. 通過固定二氧化碳(CO2)、產(chǎn)生氧氣(O2)、提高pH等間接作用,微藻還能創(chuàng)造出有效去除水中殘留有機物和病原性微生物的環(huán)境條件. 此外,微藻也具有吸附重金屬等有害物質(zhì)的能力. 因此,微藻具有成為污水深度凈化技術(shù)的良好潛力. 在污水二/三級處理中,去除營養(yǎng)元素的常見藻種包括: ①綠藻門的小球藻(Chlorella)、葡萄藻(Botryococcus)、柵藻(Scenedesmus)和微綠球藻(Nannochloris)等,其中尤以小球藻(Chlorella)和柵藻(Scenedesmus)的研究為多;②藍藻門的節(jié)旋藻屬(Arthrospira sp.)、顫藻屬(Oscillatoria sp.)和席藻屬(Phormidium);③硅藻門的三角褐指藻(P. tricornutum)等.以上種屬的N、P去除效果可參見Cai等的綜述文章. 在藻種選擇的基礎(chǔ)上,微藻培養(yǎng)系統(tǒng)(反應(yīng)器)的構(gòu)建是實現(xiàn)微藻污水處理工程化應(yīng)用的關(guān)鍵. 按微藻的生長方式不同,微藻培養(yǎng)系統(tǒng)可分為懸浮培養(yǎng)和附著培養(yǎng)兩大類. 懸浮培養(yǎng)系統(tǒng)可進一步分為開放式和封閉式兩類:①開放式系統(tǒng)主要指各類塘系統(tǒng),典型的如高效藻類塘和跑道式藻類塘等;②封閉式系統(tǒng)主要指各類光生物反應(yīng)器,分為管式(垂直、水平、螺旋)、圓柱式、薄板式和袋式等. 附著式系統(tǒng)包括光生物膜(平板)反應(yīng)器和藻細胞固定化. 考慮到污水處理的實際情況(水量大,建造、運行成本等),開放培養(yǎng)系統(tǒng)仍將是微藻污水處理的主流反應(yīng)器構(gòu)型.
如上所述,藻細胞用于生產(chǎn)生物柴油是微藻污水處理重獲新生的主要驅(qū)動力之一. 通過微藻生產(chǎn)生物柴油具有其他任何產(chǎn)油作物*的優(yōu)勢:①藻細胞的光合效率高,生長速度快、周期短,其產(chǎn)油量為47000~190000 L · hm-2 · a-1,是農(nóng)作物的7~30倍;②生物質(zhì)燃油熱值高,平均達33 MJ · kg-1,是木材或農(nóng)作物秸稈的1.6倍;③不需占用農(nóng)業(yè)用地;④生物質(zhì)(藻細胞)生產(chǎn)和加工成本低,尤其是以污水為底物進行藻細胞培養(yǎng)時. 有鑒于此,美國、歐洲、澳大利亞、日本、中國臺灣等發(fā)達國家和地區(qū)都已將微藻培養(yǎng)作為實現(xiàn)污水生態(tài)處理和可再生能源生產(chǎn)的戰(zhàn)略發(fā)展目標(biāo). 常見的產(chǎn)油藻種及其油脂含量文獻已述及. 工業(yè)上以產(chǎn)油為目的的微藻培養(yǎng)一般采用封閉式光生物反應(yīng)器,并且往往采用純培養(yǎng)或單株培養(yǎng)的方式. 當(dāng)結(jié)合污水處理目標(biāo)時,因巨大的水量及污水中復(fù)雜的成分(尤其是其中包含的混合種屬),以上培養(yǎng)方式將很難維持.
近年來,國內(nèi)外學(xué)者在開發(fā)微藻污水深度凈化和可再生能源生產(chǎn)潛力方面進行了大量研究;在污水凈化機理、藻種篩選、反應(yīng)器設(shè)計、工藝條件控制及藻細胞加工利用等方面都取得了積極的進展. 然而,無論從污水凈化本身,還是能源生產(chǎn)來說,藻細胞的分離、采收都一直是一個懸而未決的基礎(chǔ)性技術(shù)難題. 微藻細胞一般小于30 μm,帶負電荷,密度接近于水,這些特性使得藻細胞在水中往往處于穩(wěn)定的懸浮狀態(tài),很難像活性污泥那樣通過重力沉淀而實現(xiàn)自然分離. 結(jié)果,藻細胞會隨處理水大量流失,不僅二次污染處理水,而且導(dǎo)致反應(yīng)器內(nèi)生物量難以大量維持(一般僅為0.2~0.6 g · L-1). 低的培養(yǎng)密度導(dǎo)致去除效率低下,使得處理效果穩(wěn)定性較差. 對此,往往需降低處理負荷,同時采用較長的水力停留時間(HRT),進而導(dǎo)致占地面積加大. 目前普遍應(yīng)用的藻類塘系統(tǒng)HRT一般為2~6 d,當(dāng)量人口占地一般>10 m2. 顯然,其占地面積要比二/三級污水處理主體單元還要龐大許多,這在用地緊張的城市中是很難被接受的.
從能源生產(chǎn)角度看,滿足工業(yè)利用要求的藻細胞原料其生物量應(yīng)達到300~400 g · L-1(干質(zhì)量). 因此,常規(guī)培養(yǎng)下的藻液需濃縮1 000倍以上后方能在工業(yè)上加以利用. 這一高能耗的分離、濃縮過程是微藻能源生產(chǎn)中的主要能耗成本(占微藻生物質(zhì)生產(chǎn)總成本的20%~50%. 過高的生產(chǎn)成本使得藻類生產(chǎn)生物柴油與化石燃料相比仍處于劣勢.
可見,藻細胞分離、采收困難是限制微藻技術(shù)大規(guī)模工業(yè)化應(yīng)用的重要瓶頸. 微藻分離、采收常用的方法包括離心法、過濾法(包括膜濾)、氣浮法、直接重力沉降法和絮凝法等. 離心法是快速、可靠的分離采收方法. 但由于其*的能耗和投資運行成本,在目前技術(shù)條件下并不具備大規(guī)模工程應(yīng)用的潛力. 過濾法僅在分離絲狀藻時能耗和成本較低; 對于非絲狀藻極易形成膜污染,能耗和運行成本很高,不能滿足高效、低成本采收的要求. 氣浮法僅適用于采收單細胞藻類,在污水混合培養(yǎng)的條件下不能普遍適用; 此外,由于要產(chǎn)生大量的微小氣泡,其投資和運行成本/能耗亦很高,甚至可能高過離心法. 直接重力沉降法是成本低廉的分離、采收方法. 但其耗時長,分離效果和可靠性差.